Project: Smart Energy Consumption Analysis and Alert System
Project: Smart Energy Consumption Analysis and Alert System
Objective:
Build a system using the Emporia Gen 3 Smart Home Energy Monitor to track, analyze, and optimize home energy usage. The system will notify users when energy usage exceeds specified thresholds, providing real-time insights via a dashboard and alerts via email/SMS.
Components and Tools:
-
Hardware:
- Emporia Gen 3 Smart Home Energy Monitor
- Wi-Fi-enabled router
- Raspberry Pi (optional, for local data processing)
- Smart Plugs (optional, for appliance-level monitoring)
-
Software/Platforms:
- Python for data collection and processing
- Flask/Django for the dashboard (or Node.js if preferred)
- Emporia API (for retrieving energy monitor data)
- Twilio API (for SMS notifications)
- SMTP (for email notifications)
- SQLite or MySQL for data storage
-
Key APIs and Libraries:
(for interacting with the Emporia API)requests
(for data analysis)pandas
/matplotlib
(for data visualization)plotly
/Flask
(for building the web interface)Django
Steps to Build the Project:
-
Setup Emporia Gen 3 Energy Monitor:
- Install and configure the Emporia device according to the manufacturer’s instructions.
- Register the device via the Emporia app and link it to your account.
-
Access Emporia API:
- Generate API credentials from the Emporia web portal or documentation.
- Use these credentials to fetch real-time and historical energy usage data.
-
Data Collection Script (Python):
- Write a script to fetch data from the Emporia API at regular intervals.
- Save the data to a database for analysis.
import requests
import sqlite3
import time
# Emporia API configuration
API_URL = "https://api.emporiaenergy.com/v1"
API_KEY = "your_emporia_api_key"
# Database setup
conn = sqlite3.connect("energy_data.db")
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS energy_usage (
timestamp TEXT,
usage REAL
)
""")
conn.commit()
# Fetch data
def fetch_energy_data():
headers = {"Authorization": f"Bearer {API_KEY}"}
response = requests.get(f"{API_URL}/devices/usage", headers=headers)
if response.status_code == 200:
data = response.json()
usage = data["currentUsage"] # Adjust based on the API response
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
cursor.execute("INSERT INTO energy_usage VALUES (?, ?)", (timestamp, usage))
conn.commit()
else:
print("Failed to fetch data:", response.status_code, response.text)
# Schedule periodic data fetching
while True:
fetch_energy_data()
time.sleep(60) # Fetch data every minute
- Analyze and Visualize Data:
- Create daily, weekly, and monthly usage summaries.
- Visualize trends using
ormatplotlib
.plotly
import pandas as pd
import matplotlib.pyplot as plt
# Load data
data = pd.read_sql_query("SELECT * FROM energy_usage", conn)
# Plot
data['timestamp'] = pd.to_datetime(data['timestamp'])
data.set_index('timestamp', inplace=True)
data['usage'].plot(kind='line')
plt.title("Energy Usage Over Time")
plt.xlabel("Time")
plt.ylabel("Energy Usage (kWh)")
plt.show()
- Build a Web Dashboard:
- Use Flask to create a web interface for visualizing data and setting thresholds.
from flask import Flask, render_template, jsonify
app = Flask(__name__)
@app.route("/")
def index():
return render_template("index.html")
@app.route("/data")
def get_data():
data = pd.read_sql_query("SELECT * FROM energy_usage", conn)
return jsonify(data.to_dict(orient="records"))
if __name__ == "__main__":
app.run(debug=True)
- Set Alerts:
- Use Twilio or SMTP to send notifications if energy usage exceeds a threshold.
import smtplib
def send_alert(usage):
if usage > 100: # Replace with your threshold
with smtplib.SMTP("smtp.gmail.com", 587) as server:
server.starttls()
server.login("your_email@gmail.com", "your_password")
server.sendmail(
"your_email@gmail.com",
"recipient_email@gmail.com",
f"Subject: High Energy Usage AlertnnYour energy usage is too high: {usage} kWh!"
)
Features:
- Real-Time Monitoring: View live energy usage.
- Historical Data Analysis: Analyze past energy trends.
- Custom Alerts: Set thresholds for notifications.
- Dashboard: Access usage stats and trends via a user-friendly web interface.
Next Steps:
- Add machine learning to predict future energy consumption.
- Integrate with smart home devices to automate energy-saving measures.
- Expand the project to support multiple energy monitors.
Â
No Comments have been Posted.