Oh no! Where's the JavaScript?
Your Web browser does not have JavaScript enabled or does not support JavaScript. Please enable JavaScript on your Web browser to properly view this Web site, or upgrade to a Web browser that does support JavaScript.
Articles

Running Python code on Microsoft Azure

Running Python code on Microsoft Azure can be done in several ways depending on your specific use case. Below are some common methods:



### 1. **Azure Virtual Machines**
   - You can create a virtual machine (VM) on Azure and install Python on it. Then, you can SSH into the VM and run your Python scripts directly.
   - **Steps:**
     1. Create a VM in the Azure portal.
     2. SSH into the VM.
     3. Install Python if it's not already installed.
     4. Upload your Python script to the VM.
     5. Run the script using `python script.py`.

### 2. **Azure Functions**
   - Azure Functions is a serverless compute service that allows you to run small pieces of code (functions) without worrying about the underlying infrastructure.
   - **Steps:**
     1. Create a new Function App in the Azure portal.
     2. Choose Python as the runtime stack.
     3. Write your Python code in the function.
     4. Deploy and trigger the function via HTTP, timer, or other triggers.

### 3. **Azure App Service**
   - Azure App Service allows you to deploy web applications, including those written in Python.
   - **Steps:**
     1. Create a new App Service in the Azure portal.
     2. Choose Python as the runtime stack.
     3. Deploy your Python web application (e.g., Flask, Django).
     4. Access your app via the provided URL.

### 4. **Azure Notebooks (Jupyter Notebooks)**
   - Azure Notebooks provides a cloud-based Jupyter Notebook environment where you can write and run Python code interactively.
   - **Steps:**
     1. Go to Azure Notebooks.
     2. Create a new project.
     3. Add a new Jupyter Notebook.
     4. Write and run your Python code in the notebook cells.

### 5. **Azure Databricks**
   - Azure Databricks is an Apache Spark-based analytics platform optimized for Azure. It supports Python for data engineering and data science tasks.
   - **Steps:**
     1. Create a Databricks workspace in Azure.
     2. Create a new notebook in Databricks.
     3. Write and run your Python code in the notebook.

### 6. **Azure Machine Learning**
   - Azure Machine Learning is a cloud-based environment for training, deploying, and managing machine learning models. It supports Python for model development.
   - **Steps:**
     1. Create an Azure Machine Learning workspace.
     2. Use the Azure ML SDK to write and run Python code for model training and deployment.
     3. Deploy your model as a web service.

### 7. **Azure Container Instances (ACI) or Azure Kubernetes Service (AKS)**
   - You can containerize your Python application using Docker and then deploy it to Azure Container Instances or Azure Kubernetes Service.
   - **Steps:**
     1. Create a Dockerfile for your Python application.
     2. Build and push the Docker image to a container registry (e.g., Azure Container Registry).
     3. Deploy the container to ACI or AKS.

### Example: Running a Python Script in an Azure Function

1. **Create a Function App:**
   - Go to the Azure portal.
   - Click on "Create a resource" and search for "Function App".
   - Fill in the required details and choose Python as the runtime stack.

2. **Create a Function:**
   - Once the Function App is created, go to the "Functions" section.
   - Click on "Create" and choose "HTTP trigger".
   - Name your function and click "Create".

3. **Write Python Code:**
   - In the function editor, you can write your Python code. For example:
     ```python
     import logging

     import azure.functions as func

     def main(req: func.HttpRequest) -> func.HttpResponse:
         logging.info('Python HTTP trigger function processed a request.')

         name = req.params.get('name')
         if not name:
             try:
                 req_body = req.get_json()
             except ValueError:
                 pass
             else:
                 name = req_body.get('name')

         if name:
             return func.HttpResponse(f"Hello, {name}. This HTTP triggered function executed successfully.")
         else:
             return func.HttpResponse(
                  "This HTTP triggered function executed successfully. Pass a name in the query string or in the request body for a personalized response.",
                  status_code=200
             )
     ```

4. **Test the Function:**
   - Click on "Test/Run" and provide the necessary input to test your function.

5. **Deploy and Run:**
   - Once tested, you can deploy the function and access it via the provided URL.

### Example: Running a Python Script in an Azure VM

1. **Create a VM:**
   - Go to the Azure portal.
   - Click on "Create a resource" and search for "Virtual Machine".
   - Fill in the required details and create the VM.

2. **SSH into the VM:**
   - Use SSH to connect to your VM:
     ```bash
     ssh username@public-ip-address
     ```

3. **Install Python:**
   - If Python is not installed, you can install it using:
     ```bash
     sudo apt-get update
     sudo apt-get install python3
     ```

4. **Upload and Run Python Script:**
   - Use `scp` to upload your script:
     ```bash
     scp script.py username@public-ip-address:/path/to/destination
     ```
   - SSH into the VM and run the script:
     ```bash
     python3 script.py
     ```

These are just a few examples of how you can run Python code on Microsoft Azure. The method you choose will depend on your specific requirements and use case.

caa February 12 2025 17 reads 0 comments Print

0 comments

Leave a Comment

Please Login to Post a Comment.
  • No Comments have been Posted.

Sign In
Not a member yet? Click here to register.
Forgot Password?
Users Online Now
Guests Online 2
Members Online 0

Total Members: 16
Newest Member: Sunny