Oh no! Where's the JavaScript?
Your Web browser does not have JavaScript enabled or does not support JavaScript. Please enable JavaScript on your Web browser to properly view this Web site, or upgrade to a Web browser that does support JavaScript.

Sample python code for intraday scalping

Intraday scalping is a trading strategy that involves making multiple trades within a day to take advantage of small price movements. Below is a sample Python code for a simple intraday scalping strategy using moving averages. This example will use the

library to fetch historical stock data and the
library for data manipulation.

### Required Libraries
Make sure you have the following libraries installed:
pip install yfinance pandas

### Sample Code for Intraday Scalping Strategy

import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

def get_stock_data(ticker, period="1d", interval="1m"):
    Fetches historical stock data for the given ticker.
    ticker (str): Stock ticker symbol.
    period (str): Data period (default is '1d' for 1 day).
    interval (str): Data interval (default is '1m' for 1 minute).
    pd.DataFrame: DataFrame containing stock data.
    stock = yf.Ticker(ticker)
    data = stock.history(period=period, interval=interval)
    return data

def calculate_moving_average(data, window):
    Calculates the moving average for the given data.
    data (pd.Series): Stock price data.
    window (int): Window size for the moving average.
    pd.Series: Moving average data.
    return data.rolling(window=window).mean()

def implement_strategy(data, short_window, long_window):
    Implements a simple scalping strategy based on moving averages.
    data (pd.DataFrame): Stock data.
    short_window (int): Window size for the short moving average.
    long_window (int): Window size for the long moving average.
    pd.DataFrame: DataFrame with trading signals and strategy returns.
    data['Short_MA'] = calculate_moving_average(data['Close'], short_window)
    data['Long_MA'] = calculate_moving_average(data['Close'], long_window)
    data['Signal'] = 0
    data['Signal'][short_window:] = np.where(data['Short_MA'][short_window:] > data['Long_MA'][short_window:], 1, 0)
    data['Position'] = data['Signal'].diff()
    return data

def backtest_strategy(data, initial_capital=10000):
    Backtests the trading strategy.
    data (pd.DataFrame): DataFrame with trading signals.
    initial_capital (float): Initial capital for backtesting.
    float: Final portfolio value.
    data['Portfolio_Value'] = initial_capital
    data['Position_Value'] = 0
    for i in range(1, len(data)):
        data['Position_Value'].iloc[i] = data['Position'].iloc[i] * data['Close'].iloc[i]
        data['Portfolio_Value'].iloc[i] = data['Portfolio_Value'].iloc[i-1] + data['Position_Value'].iloc[i]
    return data['Portfolio_Value'].iloc[-1]

def plot_data(data):
    Plots the stock data along with moving averages and signals.
    data (pd.DataFrame): DataFrame with stock data and signals.
    plt.plot(data['Close'], label='Close Price')
    plt.plot(data['Short_MA'], label='Short MA', alpha=0.7)
    plt.plot(data['Long_MA'], label='Long MA', alpha=0.7)
    plt.plot(data.loc[data['Position'] == 1].index, data['Short_MA'][data['Position'] == 1], '^', markersize=10, color='g', label='Buy Signal')
    plt.plot(data.loc[data['Position'] == -1].index, data['Short_MA'][data['Position'] == -1], 'v', markersize=10, color='r', label='Sell Signal')
    plt.title('Intraday Scalping Strategy')

# Parameters
ticker = 'AAPL'
short_window = 5
long_window = 20
initial_capital = 10000

# Fetch stock data
data = get_stock_data(ticker)

# Implement strategy
data = implement_strategy(data, short_window, long_window)

# Backtest strategy
final_portfolio_value = backtest_strategy(data, initial_capital)

print(f"Final portfolio value: ${final_portfolio_value:.2f}")

# Plot data

### Explanation

1. **Fetching Stock Data**:
   - The `get_stock_data` function uses `yfinance` to fetch intraday data for a specified ticker, period, and interval.

2. **Calculating Moving Averages**:
   - The `calculate_moving_average` function calculates moving averages over a specified window.

3. **Implementing the Strategy**:
   - The `implement_strategy` function uses short and long moving averages to generate buy and sell signals. A buy signal is generated when the short moving average crosses above the long moving average, and a sell signal is generated when it crosses below.

4. **Backtesting the Strategy**:
   - The `backtest_strategy` function simulates trading using the generated signals and calculates the final portfolio value.

5. **Plotting Data**:
   - The `plot_data` function visualizes the stock prices along with the moving averages and buy/sell signals.

### Note
This is a simple example and may not be profitable in real-world trading. For a robust intraday scalping strategy, consider incorporating more sophisticated techniques and risk management practices. Additionally, always test your strategies thoroughly before deploying them with real money.

caa June 22 2024 30 reads 0 comments Print


Leave a Comment

Please Login to Post a Comment.
  • No Comments have been Posted.

Sign In
Not a member yet? Click here to register.
Forgot Password?