Oh no! Where's the JavaScript?
Users Online Now
Guests Online 3
Members Online 0

Total Members: 9
Articles

## Python Code to Calculate CPR - Central Pivot Range

The Central Pivot Range (CPR) is a popular technical analysis tool used by traders to identify potential support and resistance levels in financial markets. It consists of three levels: the Pivot Point (PP), the Bottom Central Pivot (BCP), and the Top Central Pivot (TCP). Here's how you can calculate the Central Pivot Range in Python:

Below is a Python code example to calculate the Central Pivot Range given a list of daily high, low, and close prices.

``def calculate_cpr(high, low, close):    """    Calculate the Central Pivot Range (CPR) for given high, low, and close prices.    Parameters:    high (float): The high price of the day    low (float): The low price of the day    close (float): The closing price of the day    Returns:    tuple: A tuple containing (Pivot Point, Bottom Central Pivot, Top Central Pivot)    """    # Calculate Pivot Point (PP)    pp = (high + low + close) / 3    # Calculate Bottom Central Pivot (BCP)    bcp = (high + low) / 2    # Calculate Top Central Pivot (TCP)    tcp = 2 * pp - bcp    return pp, bcp, tcp# Example datahigh_price = 120.0low_price = 110.0close_price = 115.0# Calculate CPRpivot_point, bottom_central_pivot, top_central_pivot = calculate_cpr(high_price, low_price, close_price)print(f"Pivot Point (PP): {pivot_point:.2f}")print(f"Bottom Central Pivot (BCP): {bottom_central_pivot:.2f}")print(f"Top Central Pivot (TCP): {top_central_pivot:.2f}")``

### Explanation

• Pivot Point (PP): The average of the high, low, and close prices. It acts as a primary support/resistance level.
• Bottom Central Pivot (BCP): The average of the high and low prices, serving as a support level.
• Top Central Pivot (TCP): Derived from the pivot point and BCP, acting as a resistance level.

caa July 25 2024 40 reads 1 comment Print

1 comment

• Handling Multiple Days of Data

If you want to calculate the CPR for multiple days of historical data, you can use pandas to process the data efficiently:

python

import pandas as pd

def calculate_cpr_for_dataframe(df):
"""
Calculate the Central Pivot Range (CPR) for each row in a DataFrame.

Parameters:
df (DataFrame): A pandas DataFrame with columns 'High', 'Low', and 'Close'

Returns:
DataFrame: A DataFrame with additional columns for 'PP', 'BCP', and 'TCP'
"""
df['PP'] = (df['High'] + df['Low'] + df['Close']) / 3
df['BCP'] = (df['High'] + df['Low']) / 2
df['TCP'] = 2 * df['PP'] - df['BCP']
return df

# Example DataFrame with historical data
data = {
'Date': ['2024-07-01', '2024-07-02', '2024-07-03'],
'High': [120.0, 125.0, 130.0],
'Low': [110.0, 115.0, 118.0],
'Close': [115.0, 120.0, 125.0]
}

df = pd.DataFrame(data)
df = calculate_cpr_for_dataframe(df)

print(df)

Example Output
- July 25 2024 22:37:14