Oh no! Where's the JavaScript?
Your Web browser does not have JavaScript enabled or does not support JavaScript. Please enable JavaScript on your Web browser to properly view this Web site, or upgrade to a Web browser that does support JavaScript.
Articles

Python Code to Calculate CPR - Central Pivot Range

The Central Pivot Range (CPR) is a popular technical analysis tool used by traders to identify potential support and resistance levels in financial markets. It consists of three levels: the Pivot Point (PP), the Bottom Central Pivot (BCP), and the Top Central Pivot (TCP). Here's how you can calculate the Central Pivot Range in Python:

central pivot range in python.png (78 KB)
Below is a Python code example to calculate the Central Pivot Range given a list of daily high, low, and close prices.

def calculate_cpr(high, low, close):    """    Calculate the Central Pivot Range (CPR) for given high, low, and close prices.    Parameters:    high (float): The high price of the day    low (float): The low price of the day    close (float): The closing price of the day    Returns:    tuple: A tuple containing (Pivot Point, Bottom Central Pivot, Top Central Pivot)    """    # Calculate Pivot Point (PP)    pp = (high + low + close) / 3    # Calculate Bottom Central Pivot (BCP)    bcp = (high + low) / 2    # Calculate Top Central Pivot (TCP)    tcp = 2 * pp - bcp    return pp, bcp, tcp# Example datahigh_price = 120.0low_price = 110.0close_price = 115.0# Calculate CPRpivot_point, bottom_central_pivot, top_central_pivot = calculate_cpr(high_price, low_price, close_price)print(f"Pivot Point (PP): {pivot_point:.2f}")print(f"Bottom Central Pivot (BCP): {bottom_central_pivot:.2f}")print(f"Top Central Pivot (TCP): {top_central_pivot:.2f}")


Explanation

  • Pivot Point (PP): The average of the high, low, and close prices. It acts as a primary support/resistance level.
  • Bottom Central Pivot (BCP): The average of the high and low prices, serving as a support level.
  • Top Central Pivot (TCP): Derived from the pivot point and BCP, acting as a resistance level.

caa July 25 2024 191 reads 1 comment Print

1 comment

Leave a Comment

Please Login to Post a Comment.
  • C
    Handling Multiple Days of Data

    If you want to calculate the CPR for multiple days of historical data, you can use pandas to process the data efficiently:

    python

    import pandas as pd

    def calculate_cpr_for_dataframe(df):
    """
    Calculate the Central Pivot Range (CPR) for each row in a DataFrame.

    Parameters:
    df (DataFrame): A pandas DataFrame with columns 'High', 'Low', and 'Close'

    Returns:
    DataFrame: A DataFrame with additional columns for 'PP', 'BCP', and 'TCP'
    """
    df['PP'] = (df['High'] + df['Low'] + df['Close']) / 3
    df['BCP'] = (df['High'] + df['Low']) / 2
    df['TCP'] = 2 * df['PP'] - df['BCP']
    return df

    # Example DataFrame with historical data
    data = {
    'Date': ['2024-07-01', '2024-07-02', '2024-07-03'],
    'High': [120.0, 125.0, 130.0],
    'Low': [110.0, 115.0, 118.0],
    'Close': [115.0, 120.0, 125.0]
    }

    df = pd.DataFrame(data)
    df = calculate_cpr_for_dataframe(df)

    print(df)

    Example Output
    - July 25 2024 21:37:14
    Sign In
    Not a member yet? Click here to register.
    Forgot Password?
    Users Online Now
    Guests Online 2
    Members Online 0

    Total Members: 11
    Newest Member: Jhilam